Building the Digital Foundation for the IoT

Ing. Davide Badiali, RCDD

Field Application Engineer COMMSCOPE

Athens, 06 October 2017

Speaker introduction

DAVIDE BADIALI

Field Application Engineering Italy, Greece & Cyprus

CommScope

Based in Milan, Italy

More than 15 years within the ICT Industry

- Degree in telecommunication engineering
- Bicsi member, RCDD certification since 2006
- Member of CEI CT306 Cabling Systems (Italian local standard committee linked to CENELEC TC CLC/TC 215 and IEC SC ISO/IEC JTC 1/SC 25)
- Member of CEI CT46 Copper cables
- Member of CEI CT48 Copper connecting hardware
- Participation to CEI SC86A and SC86B Fibres and cables, fiber interconnecting devices

Today's presentation agenda

- Industry trends and impact on infrastructure
 - How these industry trends in the building have impact on the building infrastructure
- Designing for the future to meet the challenge
 - Best practices design to ensure these can be accommodated
- Emerging technologies
 - Emerging technologies specific to the infrastructure that can help enable the digital transformation

- 1. Industry Trends and Impact on Infrastructure
- 2. Designing for the future
- 3. Emerging Technologies

INDUSTRY TRENDS AND IMPACT ON INFRASTRUCTURE

The workspace

Connectivity within the building can determine how well these challenges are met

Indoor mobility challenge

Customers don't care HOW they are connected wirelessly—they just want connectivity

IP convergence – the past

Applications	Cabling	Installation	
Security		Security	
Audio visual		AV	
HVAC control		HVAC	
Lighting		Lighting	
BMS	MAN 1319 LOU VOLTAGE COMPLIES CARLE OF THE	BMS	
In-building wireless		IBW	
IT		IT	
COMMSCSPE®		BI	CSİ

Cable installation model – now & future

IoT growth in the buildings

30%

IoT growth rate in commercial buildings

ANNUALLY

IoT, multiple technology for connectivity

- 1. Industry Trends and Impact on Infrastructure
- 2. Designing for the future
- 3. Emerging Technologies

DESIGNING THE FUTURE

Planning for mobility

• 87 percent said cellular coverage was imperative in all areas of their buildings

84% that Optimal in-building coverage improves employee productivity

80% of cell phone usage is indoors

Connectivity requirements changing

86%

market value increase in commercial buildings with IBW

Source: Coleman/Parkes Research and CommScope survey of 600 building/facility managers, 2015

Wireless solutions for the building

Wi-Fi

Distributed
Antenna System
(DAS)

Wi-Fi Application Standards

Wi-Fi – Implications for Backhaul

Table 2: ALSNR support risk for 2.5G and 5G applications

Bundled cabling length 0m to 50m	Category 5e	Category 6	Category 6A
2.5GBASE-T			Assured
5GBASE-T Assured			Assured
Bundled cabling length 50m to 75m	Category 5e	Category 6	Category 6A
2.5GBASE-T			Assured
5GBASE-T Assured			Assured
Bundled cabling length 75m to 100m	Category 5e	Category 6	Category 6A
2.5GBASE-T			Assured
5GBASE-T Assured			Assured
ALSNR Risk	High	Medium	Low

Source: NBASE-T Performance and Cabling Guidelines; NBASE-T Alliance

Challenges for In-Building Wireless (1/4)

COSTS

Mobile operators have other priorities, companies are left to finance these systems on their own unless they can find a neutral host operator to fund the system and lease it. Traditional DAS solutions were designed for large facilities (stadiums, airports) don't scale down well in enterprises.

Challenges for In-Building Wireless (2/4)

COMPLEXITY

Enterprise IT teams understand Wi-Fi technology, but they have had a steep learning curve in understanding the ins and outs of multi-frequency support, coax cabling, head-ends and remote antenna units.

Challenges for In-Building Wireless (3/4)

CARRIER COORDINATION

Since a DAS needs to be fed with a carrier base station or signal source, carriers must be involved in its deployment. Enterprises must obtain permission from the carrier, and this can slow deployments considerably.

Challenges for In-Building Wireless (4/4)

LACK OF SKILLS

Enterprise IT teams simply don't have the skills needed to design, commission and maintain RF equipment, run coax cabling or integrate the other components of a DAS.

DAS is becoming enterprise-friendly

	Advancement	Description	Benefits
	Universal Access Points	Single remote supports all operators and frequencies	Operator flexibility, improved aesthetics
	All-digital	Eliminates signal power loss over long distances	Improved performance, simplified design
	IT cabling	Uses standard fiber and Cat6A cable rather than analog coaxial	Reduced material and installation cost
	Management tools	Software tools for configuration and management	Easier setup and ongoing operations
	Infrastructure sharing	Share cabling infrastructure with Wi-Fi, IP security cameras	Reduced number of cable runs
COMMSC	PE°		BICSI

Standard for DAS (TIA TSB-5018)

TIA TSB-5018, approved July 2016, defines cabling for DAS more closely matching typical building cabling:

- Cabling Subsystems
 - Backgone: single-mode, OM4 recommended
 - Horizontal: Category 6A recommended
- Coverage area (space containing the antennas)
- TRs or common telecoms room (CTR)
- ERs or common equipment room (CER)
- Entrance facilities (EF)
- Administration

DAS cabling based on generic cabling system structure in ANSI/TIA-568-D.0.

Small Cell

Small cells are becoming more enterprise-ready

Legacy standalone small cells

- Access points create borders
 Dead zones and handovers
- Capacity fixed to access points
- Complex RF design

Cloud-RadioAccessNetwork (C-RAN) small cells

- Single cell with no borders
 No dead zones, no handovers
- Capacity follows the users
- Simple design and deployment

Typical use cases for DAS and Small Cell

Low Voltage Over TP Revolution

PoE evolution and installation practices

Ever increasing power delivered via PoE is driving need for cable installation guidelines

Category 6A recommendations in standards

TIA TSB-162
TIA TSB-5018 (IBW)
ISO TR 24704

TIA 942-A ISO 24767

Education

TIA 4966

TIA 1179

Higher bandwidth and power driving need for Category 6A cabling

TIA 862-B draft ISO 11801-6 draft

TIA TSB-5021 ISO TR 11801-9904

Infrastructure standards for Wi-Fi

A new concept: Universal Connectivity Grid

From TR, to CP to TO

Zone cabling

relies on a hierarchy of infrastructure to connect the telecommunications room (TR) to each zone's consolidation point (CP), which acts as an intermediary between the core network and the telecommunications outlet (TO).

UCG: planning for wireless

Planning Recommendations

- 2 outlets per cell for Wi-Fi
- 2 additional outlets for IBW + spare
- Maximum cell size per TIA/ISO*
- Category 6A horizontal cabling
- OM3/OM4 riser backbone

^{*} Smaller size should be considered for high density areas

UCG: planning for low voltage applications

UCG: Spacing and connections counts

Applications	Ports Per Endpoint	Notes/Additional Considerations	Ports Per Cell
Work Station	Two ports per desk	Assumes 36 workstations per 60 foot x 60 foot cell	72 ports
Wi-Fi	Two ports per WAP	Plan for two access points per cell to accommodate future capacity increases	Four ports
In-building wireless	Two ports per AP	Plan one spare port to accommodate future needs	Two ports
Paging and sound masking	One to four ports per system	System architectures vary. Reference manufacturer's requirements	One to four ports
Low-voltage lighting with in- tegrated occupancy sensors	One port per fixture and wall switch	Assumes 9.5 foot ceiling height with connections for wall switches or sensors in common areas	40-48 ports
Occupancy sensors	One port per sensor	Plan one sensor per desk, with additional sensors in hallways and other common areas spaced roughly 10 feet to 15 feet apart	36-48 ports

The number of cable drops in each cell depends on the applications supported and the size of the cell

- 1. Industry Trends and Impact on Infrastructure
- 2. Designing for the future
- 3. Emerging Technologies

EMERGING TECHNOLOGIES

AIM – Automted Infrastructure Management

ISO/IEC 18598 – AIM Standard (October 2016)
Real-time automated documentation of physical layer

AIM is an integrated system consisting of hardware & software components

Automatic Detection the insertion and removal of cords

Management and realtime monitoring of connectivity changes

Network Device
Discovery and their
location information

API for Integrations with other systems

AIM: end-to-end physical layer connectivity

AIM: real-time IP devices detection

AIM: managing PoE

AIM systems ensure

that planning and maintenance of PoE over structured cabling system is done in compliance with TIA TSB-184-A and ISO 14763-2 standards

AIM provides unique capabilities for tracking cable bundle size, number of powered cables and their power level

AIM: source for accurate and real time network connectivity data for use by IoT Analytics

Amendment 1 to ISO/IEC 14763-2

Usage Recommendations for customer cabling premises

Table 11 – Level of operational complexity

No. of administered ports 2 to 100 101 to 5 000 >5 000

AlMisaMUST have!

@1907BC 2013

NOTE 2 Manual records include paper-based systems. Electronic records include spreadsheets, databases etc.

Automated records include the data from automated infrastructure management (AIM) systems that detect connection/disconnection of cords and/or services provided over the cabling. Requirements and recommendations for specifying and operating AIM systems are provided in Annex H

Single Twisted Pair Ethernet

- Demand initiated in automotive and industrial Ethernet applications
- Migrating from legacy multi-drop and analog to point to point digital
- Unified architecture eliminates gateways
- Now under consideration for IoT
- Standard developments:
 - IEEE 802.3cg > 10 Mb/s
 - IEEE 802.3bw > 100 Mb/s
 - IEEE 802.3bp > 1 Gb/s
 - IEEE 802.3bu > Power over Data Lines (0.5 to 50W)

86% of M2M/IoT devices consume less than 3Mb/Month

[Souce: John Brehm & Associates, 2015]

Single-Pair Ethernet - IoT

IoT Applications – Power and Bandwidth

Summary

- The workplace continues to undergo significant change
- IoT and Mobility will challenge traditional building infrastructure
- New design architecture and technologies simplify installation and management

Ing. Davide Badiali, RCDD

Field Application Engineer Italy, Greece & Cyprus

COMMSCOPE®

Via Archimede 22/24, 20864 Agrate Brianza (MB) Italy

T: +390396054687

M: +393483013063

E: badiali@commscope.com

www.commscope.com

