The IoT Revolution

Ing. Davide Badiali, RCDD Field Application Engineer COMMSCOPE Athens, 15th November 2019

Speaker introduction, who I am

DAVIDE BADIALI Field Application Engineering Italy, Greece & Cyprus

COMMSCOPE® Based in Milan, Italy

More than 18 years within the ICT Industry

- Degree in telecommunication engineering
- Bicsi member, RCDD certification since 2006
- Member of CEI (Comitato Elettrotecnico Italiano):
 - CT 306, Interconnection of ICT equipment
 - CT 46, Copper communication cables
 - CT 48, Copper connecting hardware
 - SC 86A, Fibres and cables
 - SC 86B, Fibre optic interconnecting devices

https://www.linkedin.com/in/davidebadiali/

CONNECTIVITY IS EVERYWHERE.

THE FOURTH INDUSTRIAL REVOLUTION.

- Powered by unprecedented data, speed and multi-purpose networks
- Fueled by emerging technology trends like 5G, Convergence, IoT

COMMSCOPE[®]

Devices & Applications Driving Networks

Conne To Rea	cted Device ch 29 Billio	es Are Expected n In 2022	Connected Devices Are The Primary Driver Of Speed And Latency Responsiveness W	May Slow, /ill Accelerate
2	022 Conr	nected Devices	Possible Future New Use Cases Key Change	s to watch
23	2.1B	Wide-area IoT (SigFox, LoRa, Ingenu)	Smart Buildings/Cities Smart Buildings/Cities Machine Learning	6 adoption
(^{ررن} ې	1.6B	Short-range IoT (Wi-Fi, Bluetooth, Zigbee)	Near- TermMobile VR/AR• Network bec• Connected Car• symmetric	oming more
	1.7В 8.6В	Mobile Phones	 Autonomous vehicles Massive Industrial IoT Ease of platfor application do will likely be 	orm and levelopment a key factor in
L	1.3B	Landline Phones	Longer- Term • Al Robots • Al Robots	es take off

The Big Picture: Wired and wireless

Connectivity IC Shipments by Technology Group, 2018

Communication Systems: Everything Over Twisted Pair

IoT— Multiple connectivity technologies

By Cables or Wireless, but the APs also need Connectivity & Power

EIGHTLESS*

Every Silo Requires Duplicate Equipment

- Separate IoT Gateways
- More Switches
- More Cabling
- Separate Security
- High Costs = Questionable ROI

... Creating a Redundant Network Infrastructure

Converged Access Points / Wireless Converged

Converged APs

A multi-standard wireless access point (AP) that extends the traditional Wi-Fi only AP to include IoT and cellular wireless technologies.

Target Verticals Share Common Themes

Enhanced Safety

COMMSCOPE[®]

Energy Management

Asset Tracking

Enhanced Experience

Staff Alerts / Panic Buttons

kontakt.io

Small wearable panic buttons can send an alert to building security or to a preset list of notification devices.

Panic Button

Y.

HOSPITALITY

HEALTHCARE

Connectivity for the licensed and unlicensed spectrum in buildings

Compare the speed of the Gs below...if kbps were mph

Communication Systems Indoor cellular coverage and capacity

Existing Band Deployments (1900MHz)

5G New Bands (28GHz)

Connectivity Challenge

Intelligent Lighting and Sensors

WiFi and In-Building Wireless Audiovisual Services

> Building Automation and Access Control

Wired LAN

Universal Connectivity Grid

A common connectivity platform provides efficiencies in design and operations

Planning for Integrated Low Voltage Infrastructure

Additional Planning Recommendations

- Security & Access Control
- Lighting and Sensors
- Building Controls
- Digital Signage
- Work Area Cabling

Universal Connectivity Grid

COMMSCOPE[®]

Planning connectivity for UCG cells – ISO/IEC 11801-6

Table A.2 – Reco				
Deployment	Office spaces ^b	Ir		
Stand-alone	16 m ² (4 m × 4 m grid)	16 (4		
Overlay	16 m ² (4 m × 4 m grid)	16 (4		

COMMSCOPE GUIDELINES UCG around 49m2 (7x7m), and minimun 4 x RJ45 Category 6A Outlets

	Estimated SOs per SCP				
Service	Office spaces	Industrial spaces	Homes	Computer rooms	
Access control	1	0,5	0,25	1	
Burglar alarms	0.5	0,1	1	0,25	
Asset management	0,25	0.25	0	0,25	
Audio-visual	1	0.25	1	0,1	
Building information	1	0,1	0,1	0,1	
Building well-being	1	1	0	1	
Energy management	1	1	1	1	
Environmental control	1	1	1	2	
Fixed IT services ^a	2	1	0	1	
Personal well-being	0.5	0,5	0,5	0,5	
Shared IT services	1	0,5	0,25	0,5	

Table A.3 – Estimated SOs per SCP

^a Provision for fixed IT services not required in overlay implementation.

Single Pair Ethernet

IEEE 802.3cg 10Mb/s Ethernet over a single balanced pair

- Power + Data
- 15m and 1000m
- Multidrop 25m and 8 stations
- Cable & Cabling Topology Reuse
- Standarized connector (LC copper IEC 63171-1)

COMMSCOPE®

COMMSCOPE[®]

Single Pair Cable Specifications – IEC

- As of April 12, 2018: Section 5.3 of IEC 61156-11 states that the conductor shall be a solid annealed copper conductor, in accordance with 5.2.1 of IEC 61156-1 and should have a nominal diameter between 0,4 mm and 0,65 mm. A conductor diameter of up to 0,8 mm may be used.
- In other words, the standard is targeted toward 22 to 26 AWG conductors but supports conductors as large as 20 AWG.
- No support for 18 AWG is implied.

AWG #	Diameter (mm)	Diameter (inch)
18	1.0237	0.0403
19	0.9116	0.0359
20	0.8118	0.032
21	0.7229	0.0285
22	0.6438	0.0253
23	0.5733	0.0226
24	0.5106	0.0201
25	0.4547	0.0179
26	0.4049	0.0159
27	0.3606	0.0142
28	0.3211	0.0126

- The CCA provides a method of termination of High Quality and at reasonable cost of wiring on RJ45 male connectors.
- Suitable for applicances like Wfi Aps, IoT, IP Cameras, BMS...

BICSI

Testing of Ceiling Connector Assembly

Automated Infrastructure Management - ISO/IEC 18598

The Infrastructure of the Future

Simple Scalable to use Scalable to grow Converg. Cat6A Flexible to change UCG Intelligent to manage AIM

Ubiquitous wired & wireless infrastructure

Ing. Davide Badiali, RCDD

Field Application Engineer Italy, Greece & Cyprus

Via Archimede 22/24, 20864 Agrate Brianza (MB) Italy

T: +390396054687

M: +393483013063

E: badiali@commscope.com

www.commscope.com

